An improved K-Means Algorithm Based on Association Rules
نویسندگان
چکیده
منابع مشابه
Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملAn Improved K-means Algorithm based on Mapreduce and Grid
The traditional K-means clustering algorithm is difficult to initialize the number of clusters K, and the initial cluster centers are selected randomly, this makes the clustering results very unstable. Meanwhile, algorithms are susceptible to noise points. To solve the problems, the traditional K-means algorithm is improved. The improved method is divided into the same grid in space, according ...
متن کاملAn Improved K-means Algorithm Based on Structure Features
In K-means clustering, we are given a set of n data points in multidimensional space, and the problem is to determine the number k of clusters. In this paper, we present three methods which are used to determine the true number of spherical Gaussian clusters with additional noise features. Our algorithms take into account the structure of Gaussian data sets and the initial centroids. These thre...
متن کاملImproved K-means Clustering Algorithm Based on Genetic Algorithm
Through comparison and analysis of clustering algorithms, this paper presents an improved Kmeans clustering algorithm. Using genetic algorithm to select the initial cluster centers, using Z-score to standardize data, and take a new method to evaluate cluster centers, all this reduce the affect of isolated points, and improve the accuracy of clustering. Experiments show that the algorithm to fin...
متن کاملAn Improved Grid-Based K-Means Clustering Algorithm
The traditional K-means clustering algorithm is difficult to initialize the number of clusters K, and the initial cluster centers are selected randomly, this makes the clustering results very unstable. Meanwhile, algorithms are susceptible to noise points. To solve the problems, the traditional K-means algorithm is improved. The improved method is divided into the same grid in space, according ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Theory and Engineering
سال: 2014
ISSN: 1793-8201
DOI: 10.7763/ijcte.2014.v6.853